產地類別 | 國產 | 價格區間 | 面議 |
---|---|---|---|
應用領域 | 化工,石油 |
產品簡介
詳細介紹
氧化鋯氧含量分析儀--金湖天翔儀表有公司 質量是企業的生命,每件產品都是匠心之作!
氧化鋯氧探頭的測氧原理
氧化鋯的導電機理:電解質溶液靠離子導電,具有離子導電性質的固體物質稱為固體電解質。固體電解質是離子晶體結構,靠空穴使離子運動導電,與P型半導體空穴導電的機理相似。
純氧化鋯(ZrO2)不導電,摻雜一定比例的低價金屬物作為穩定劑,如氧化鈣(CaO2)、氧化鎂(MgO)、氧化釔(Y2O3),就具有高溫導電性,成為氧化鋯固體電解質。
為什么加入穩定劑后,氧化鋯就會具有很高的離子導電性呢?
這是因為,摻有少量CaO2 的ZrO2混合物,在結晶過程中,鈣離子進入立方晶體中,置換了鋯離子。由于鋯離子是+4價,而鈣離子是+2價,一個鈣離子進入晶體,只帶入了一個氧離子,而被置換出來的鋯離子帶出了兩個氧離子,結果,在晶體中便留下了一個氧離子空穴。例如:(ZrO2)0.85 (CaO2)0.15這樣的氧化鋯(氧化鋯的摩爾分數為85%、氧化鈣的摩爾分數是15%),則具有7。5%的摩爾分數的氧離子空穴,是成了一種良好的氧離子固體電解質。
在一個高致密的氧化鋯固體電解質的兩側,用燒結的方法制成幾微米到幾十微米厚的多孔鉑層作為電極,再在電極上焊上鉑絲作為引線,就構成了氧濃差電池,如果電池左側通入參比氣體(空氣),其氧分壓為p0;電池右側通入被測氣體,其氧分壓為p1(未知)。
設p0 > p1,在高溫下(650…850℃),氧就會從分壓大的p0一側向分壓小的p1側擴散,這種擴散,不是氧分子透過氧化鋯從P0側到P1側,而是氧分子離解成氧離子后,通過氧化鋯的過程。
在750℃左右的高溫中,在鉑電極的催化作用下,在電池的P0側發生還原反應,一個氧分子從鉑電極取得4個電子,變成兩個氧離子(O2-)進入電解質,即:O2(P0)+ 4e →2O2-P0側鉑電極由于大量給出電子而帶正電,成為氧濃差電池的正極或陽極。這些氧離子進入電解質后,通過晶體中的空穴向前運動到達右側的鉑電極,在電池的P1側發生氧化反應,氧離子在鉑電極上釋放電子并結合成氧分子析出,即:2O2- - 4e →O2(P1)
P1側鉑電極由于大量得到電子而帶負電,成為氧濃差電池的負極或陰極。
這樣在兩個電極上,由于正負電荷的堆積而形成一個電勢,稱之為氧濃差電動勢。當用導線將兩個電極連成電路時,負極上的電子就會通過外電路流到正極,再供給氧分子形成離子,電路中就有電流通過。氧濃差電動勢的大小,與氧化鋯固體電解質兩側氣體中的氧濃度有關。
氧化鋯氧傳感器工作原理
在氧化鋯電解質(ZrO2管)的兩側面分別燒結上多孔鉑(Pt)電極,測量電池本體分為3層:鉑(電極)─氧化鋯(電解質)─鉑(電極)。鉑電極是多孔性的。煙道氣體通過過濾器或校驗氣體通過傳導管進入測量電池被測氣體一側,而另一側為參比空氣(含氧20.60%)。
兩種含氧濃度不同的氣體作用在測量電池,便產生一個以對數為規律的電勢(兩側的氧濃度差愈大, 電勢信號愈大)。毫伏信號經氧分析儀轉換成0—10mA或4-20mA標準電流。此電流由氧分析儀接線端子輸出。
測量電池的工作溫度設置為高于650℃的恒定溫度, 為了保持工作溫度恒定,用一支K型熱電偶測量電池的工作溫度,經氧分析儀內的溫度控制器調節加熱器的加熱電壓。
當測量煙氣溫度高于700℃時,傳感器組成中省去加熱器和測溫熱電偶。
在理想狀態下,當被測煙氣與參比氣濃度一樣時,其輸出電勢E值為 0 mV, 但在實際應用中,鋯管實際條件和現場情況均不是理想狀態。故事實上的鋯管是偏離此值的。實際上,一定氧含量鋯管輸出的電勢為理論值和本底電勢的和,我們稱為無濃差條件下鋯管輸出的電勢值為本底電勢或稱為零位電勢,此值的大小又在不同溫度下呈不同的值,并且隨鋯管使用期延長而變化。因此,如不對此情況處理,會嚴重影響整套測氧儀的準確和探頭壽命。
氧化鋯氧量分析儀的結構及種類
氧化鋯氧量分析儀的構成是由氧傳感器(又稱氧探頭、氧檢測器)、氧分析儀(又稱變送器、變送單元、轉換器、分析儀)以及防塵裝置、熱電偶、加熱器、標準氣體導管、接線盒以及外殼殼體等組成。
防塵裝置由防塵罩和過濾器組成,能防止煙氣中的灰塵進入氧化鋯鋯管內部,使鋯管元件免受污染,并能起到緩沖氣樣作用。
氧化鋯管元件是氧探頭的核心部件,由它產生氧濃差電勢信號。氧化鋯管是陶瓷類金屬氧化物,使用時必須避免劇烈震動,以免損壞鋯管元件。
熱電偶是探頭內置加熱器恒溫控制之用,也是測量鍋爐、窯爐煙道中被測氣體的溫度的元件,為氧量計算提供一個溫度信號。
加熱器的作用是提供氧化鋯固體電解質元件正常工作所需的溫度,從而使其在低于600℃的被測煙氣環境中也能正常工作。
來自氧探頭的氧電勢信號、熱偶溫度信號經放大送A/D轉換電路,與校正系數一起進行數據處理,即可得出氧含量的百分含量。同時,系統可實行氧電勢、探頭溫度、校正系數值的顯示,并對鋯管的加熱電爐進行恒溫控制,且輔以斷偶、超溫保護、熱偶反接保護,確保系統可靠工作。
按檢測方式的不同,氧化鋯氧探頭分為兩大類:采樣檢測式氧探頭及直插式氧探頭。
采樣檢測式氧探頭
采樣檢測方式是通過導引管,將被測氣體導入氧化鋯檢測室,再通過加熱元件把氧化鋯加熱到工作溫度(750℃以上)。氧化鋯一般采用管狀,電極采用多孔鉑電極。其優點是不受檢測氣體溫度的影響,通過采用不同的導流管可以檢測各種溫度氣體中的氧含量,這種靈活性被運用在許多工業在線檢測上。其缺點是反應時間慢;結構復雜,容易影響檢測精度;在被檢測氣體雜質較多時,采樣管容易堵塞;多孔鉑電極容易受到氣體中的硫,砷等的腐蝕以及細小粉塵的堵塞而失效;加熱器一般用電爐絲加熱,壽命不長。
在被檢測氣體溫度較低(0℃~650℃),或被測氣體較清潔時,適宜采樣式檢測方式,如制氮機測氧,實驗室測氧等。
氧化鋯氧含量分析儀直插檢測式氧探頭
直插式檢測是將氧化鋯直接插入高溫被測氣體,直接檢測氣體中的氧含量,這種檢測方式適宜被檢測氣體溫度在700℃~1150℃時(特殊結構還可以用于1400℃的高溫),它利用被測氣體的高溫使氧化鋯達到工作溫度,不需另外用加熱器。直插式氧探頭的技術關鍵是陶瓷材料的高溫密封和電極問題。
由于需要將氧化鋯直接插入檢測氣體中,對氧探頭的長度有較高要求,其有效長度在500mm~1000mm左右,特殊的環境長度可達1500mm。且檢測精度,工作穩定性和使用壽命都有很高的要求,因此直插式氧探頭很難采用傳統氧化鋯氧探頭的整體氧化鋯管狀結構,而多采取技術要求較高的氧化鋯和氧化鋁管連接的結構。密封性能是這種氧化鋯氧探頭的關鍵技術之一。目前上*的連接方式,是將氧化鋯與氧化鋁管焊接在一起,其密封性能佳,與采樣式檢測方式比,直插式檢測有顯而易見的優點:氧化鋯直接接觸氣體,檢測精度高,反應速度快,維護量較小。