燃燒技術是當前處理VOCs的主流技術,包括催化燃燒、熱力燃燒、蓄熱催化燃燒、蓄熱熱力燃燒、濃縮-(催化)燃燒等。由于燃燒技術的基本原理是VOCs在高溫下發生氧化反應,氧化反應其本質就是燃燒反應,燃燒反應是放熱反應。VOCs燃燒過程的放熱量與VOCs種類和濃度有關。此外,從安全考慮,很有必要了解VOCs燃燒的安全使用濃度。了解燃燒過程溫升和可燃氣體爆炸下限,有利于提高催化燃燒技術的安全性。下面通過常見VOCs,對這兩方面做簡單介紹。
一、VOCs的爆炸(燃燒)下限
可燃氣體在空氣中遇明火種爆炸的低濃度,稱為爆炸下限,也稱燃燒下限,簡稱為"LEL"(LowerExplosionLimited)??諝庵锌扇細怏w濃度達到其爆炸下限值時,我們稱這個場所可燃氣環境爆炸危險度為,即100%LEL。如果可燃氣體含量只達到其爆炸下限的百分之十,這個場所此時的可燃氣環境爆炸危險度為10%LEL。表1是常見VOCs在標準狀態下爆炸下限值。為了確保VOCs燃燒處理過程安全,VOCs廢氣的濃度必須控制在相應有機物的爆炸極限的25%以下。
為什么可燃氣體濃度要控制25%LEL以下呢?首先可燃氣體燃燒的爆炸下限濃度與可燃氣體的初始溫度有關,圖1是溫度對正己烷爆炸下限濃度的影響(姚潔等,工業安全與環保,2012,38(2):48)當可燃氣體初始溫度提高,爆炸下降濃度下降。當氣體溫度達到600K(327oC),爆炸下降濃度為室溫的75%,可見提高溫度導致爆炸下限濃度的明顯下降。其二是時間工況中大多數是混合VOCs,混合VOCs也帶來爆炸下限濃度的不確定性。因此,實際工程中要控制在LEL濃度的25%內。
二、VOCs燃燒過程的絕熱溫升
VOCs在燃燒過程是強放熱反應,由于放熱使得氣體溫度的升高。表2是VOCs濃度1000mg/m3時*燃燒的絕熱溫升。如采用催化燃燒技術處理VOCs,在設備和催化正常情況下,催化劑反應前后氣體溫度的變化(溫升)反映了VOCs的濃度的變化。如1000mg/m3甲苯*燃燒的絕熱溫升為31.95oC,如果在實際使用過程中,溫升達到320oC,那么甲苯濃度大約達到了10000mg/m3,已經達到了甲苯的25%LEL值,此時已經非常不安全了,要及時降低甲苯濃度。在活性炭濃縮-催化燃燒系統中,在活性炭脫附過程,可以通過VOCs催化劑床層的溫升,來檢測VOCs濃度的變化。很多可燃氣體濃度報警器就是利用這一原理的。
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。