作者:Alexander I. Bulavchenko†, Aida T. Arymbaeva†, Marina G. Demidova†, Pavel S. Popovetskiy*† , Pavel E. Plyusnin† , and Olga A. Bulavchenko‡
† Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
‡ Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
摘要:In this work, we tried to combine the advantages of microemulsion and emulsion synthesis to obtain stable concentrated organosols of Ag nanoparticles, promising liquid-phase materials. Starting reagents were successively introduced into a micellar solution of sodium bis-(2-ethylhexyl)sulfosuccinate (AOT) in n-decane in the dynamic reverse emulsion mode. During the contact of the phases, Ag+ passes into micelles and Na+ passes into emulsion microdroplets through the cation exchange AOTNaOrg + AgNO3Aq = AOTAgOrg + NaNO3Aq. High concentrations of NaNO3 and hydrazine in the microdroplets favor an osmotic outflow of water from the micelles, which reduces their polar cavities to ∼2 nm. As a result, silver ions are contained in the micelles, and the reducing agent is present mostly in emulsion microdroplets. The reagents interact in the polar cavities of micelles to form ∼7 nm Ag nanoparticles. The produced nanoparticles are positively charged, which permitted their electrophoretic concentration to obtain liquid concentrates (up to 30% Ag) and a solid Ag–AOT composite (up to 75% Ag). Their treatment at 250 °C leads to the formation of conductive films (180 mOhm per square). The developed technique makes it possible to increase the productivity of the process by ∼30 times and opens up new avenues of practical application for the well-studied microemulsion synthesis.
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。