文獻名: Thermodynamic and Kinetic Parameters of Adsorption of Heavy Metals Ions on Magnetic Composite Sorbent
作者: Kharlyamov, Damir A.; Albutova, Darya A.; Denisova, Tatiana R.; Mavrin, Gennady V.; Suleimanov, Ilnar F.
摘要:The process of adsorption of Cr6+, Cu2+ and Ni2+ ions on the magnetic composite sorbent (MCS) that obtained by magnetite deposition on the surface of wood fiber waste was studied. The research of adsorption of the considered heavy metal ions (HMI) was carried out in a static mode in a neutral and acidic medium at temperatures of 288, 298, 308 K. It was found that with increasing temperature, the adsorption capacity MCS increases, that indicates the chemical nature of the forces holding HMI on the composite surface. The adsorption capacity of MCS decreases in an acidic medium, and when the temperature decreases. Adsorption capacities MCS were calculated and adsorption isotherms HMI were constructed based on the obtained data. The adsorption capacity for Cr6+ ions was 1.47 mmol/g in a neutral medium at 298 K, for Cu2+ ions—1.09 mmol/g, for Ni2+ ions—0.60 mmol/g. It is determined that the Langmuir equation the best describes adsorption process with approximation coefficients R 2 more than 0.998. From the data of treatment of adsorption isotherms, it follows that the adsorption processes of HMI on MCS relate to the processes of chemical adsorption. Kinetic dependences were obtained under static conditions in a neutral medium at different temperatures. For determining the limiting stage of adsorption, the obtained experimental data are processed using different kinetic models: diffusion model, pseudo-first and pseudo-second order models. It is found that adsorption process the best describes a pseudo-second order model, that assumes that the chemical reaction of the exchange limits the adsorption process.
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。