文獻名:Silver nanoparticles stabilized by AOT and Tergitol NP-4 mixture: Influence of composition on electrophoretic concentration, properties of concentrated organosols and conductivity of films
作者:Pavel S. Popovetskiya, Darya I. Beketovaab
aNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Avenue, Novosibirsk, 630090, Russia
bNovosibirsk State University, 1 Pirogova street, Novosibirsk, 630090, Russia
摘要:A comparative analysis of the main physico-chemical characteristics of silver nanoparticles produced in mixed reverse micelles of nonionic surfactant Tergitol NP-4 with addition of anionic AOT was carried out. The nanoparticles are shown to have a positive electrokinetic potential. The only exception is nanoparticles synthesized in Tergitol NP-4 reverse micelles without addition of AOT, which have a zero electrokinetic potential. An increase in AOT concentration in the mixture leads to a decrease in the size of particles produced and an increase in the electrokineticpotential. It was shown that silver nanoparticles with close to quantitative extraction rates can be concentrated by non-aqueous electrophoresis with AOT content in mixture equaled 5 mol% and more. For mixture with content of AOT more than 50 mol%, no concentration is observed for surfactants. In the systems with high content of Tergitol NP-4 an increase in the concentration of surfactants is observed compared to the starting organosol. A decrease in AOT concentration leads to a decrease in the stability of the nanoparticles that results in a reversible change in the surface plasmon resonance spectra of nanoparticles under drying and irreversible agglomeration of nanoparticles with a decrease in the surfactant concentration. The presence of reversible agglomeration of the nanoparticles is likely due to the strong negative effect of Tergitol NP-4 on the stability as well as the conductivity and adhesion of coatings produced by thermolysis of the nanoparticle concentrate.
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。