文獻名: 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal
作者: Rui Pei, Longlong Fan, Feigang Zhao, Jingran Xiao, Yucheng Yang, Aonan Lai, Shu-Feng Zhou, Guowu Zhan
College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, PR China
摘要:Three-dimensional (3D) printing technique has received exceptional global attention as it can create a myriad of high-resolution architectures from digital models. In the present study, 3D-printed metal-organic frameworks (MOFs) were shaped into several geometries via direct ink writing, which overcomes the instability and high-pressure drop of powdery MOF during the flow of gas or liquid streams. The inclusion of a blend of calcium alginate and gelatin (CA-GE) as biocompatible binder allowed for easy writing and an enhanced mechanical property. Besides, it was found that the printing geometry (square, hexagon, and circle), MOF loading amount, and MOF size also greatly influenced the adsorptive performance. For instance, the methylene blue adsorption efficiency of CA-GE scaffolds without MOF was only 43.6%, while the printed MOF/CA-GE sample exhibited 99.8% adsorption efficiency at 20 min. Both the inherent microporous structure of MOFs and meso/macroporous structures of the 3D matrix contributed to the excellent adsorption properties towards a variety of organic dyes and their mixtures. Furthermore, the 3D-printed adsorbents can be easily regenerated in dilute acid solution and reused for at least 7 times without performance loss. In contrast, the powdery MOF can only be repeatedly used for at most 2 times.
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。