研究團隊采用叔丁醇 (TBA) 為原料,過氧化氫 (H?O?) 為氧化劑,硫酸 (H?SO?) 為均相催化劑,通過兩步反應合成TBHP:
圖1 在硫酸酸性條件下,通過過氧化氫氧化叔丁醇(TBA)合成叔丁基過氧化氫(TBHP)
連續流動反應系統:
(a)康寧AFR微通道反應器
(b)管式反應器
(c)康寧AFR外接PTFE
(d)傳統的圓底燒瓶反應裝置。
進料系統:原料TBA/H?SO?混合液(A液)和H?O?溶液(B液)分別由注射泵和HPLC泵精確輸送至反應器
產物分析: 采用核磁共振波譜 (1H NMR, HSQC 2D 1H-13C NMR) 對產物組成進行定量分析,甲苯為內標。
為確定康寧AFR微通道反應器中合成TBHP的最佳條件,研究團隊系統考察了催化劑用量、反應溫度、氧化劑用量及停留時間等參數的影響。
實驗條件:反應溫度50°C,TBA:H?O?摩爾比1:1,改變H?SO?/TBA摩爾比 (0.8-1.2) 和停留時間 (0.49-4.9 min)。
圖 3反應溫度對以下指標的影響:(a) TBA轉化率,(b) TBHP和DTHP選擇性,(c) TBHP和DTHP收率(TBA與過氧化氫摩爾比為1:1時)
結果:當H?SO?/TBA摩爾比為1.0,停留時間為0.98分鐘 (流速2.75 mL/min) 時,TBA轉化率達到約45.06%。在該條件下,TBHP產率約為42.4%,副產物DTBP產率約為1.7%。因此,選擇H?SO?/TBA摩爾比為1.0進行后續實驗。
實驗條件:H?SO?/TBA摩爾比1.0,TBA:H?O?摩爾比1:1,停留時間0.98分鐘,考察反應溫度 (60°C - 70°C)。
圖 4反應溫度對以下參數的影響(叔丁醇與過氧化氫摩爾比1:1條件下):(a) 叔丁醇轉化率(b) 叔丁基過氧化氫與二叔丁基過氧化物的選擇性(c) 叔丁基過氧化氫與二叔丁基過氧化物的收率
結果:隨著溫度從60°C升高到70°C,TBA轉化率和TBHP產率均顯著提高。在70°C時,TBA轉化率達到85.87%,TBHP產率為73.77%,DTBP產率為8.2%。過高溫度可能導致TBHP分解。因此,70°C被選為最佳反應溫度。
實驗條件:反應溫度70°C,H?SO?/TBA摩爾比1.0,停留時間0.98分鐘,考察H?O?/TBA摩爾比。
圖 5不同反應溫度下TBA與H2O2摩爾比對以下參數的影響:(a) TBA轉化率(b) TBHP與DTHP選擇性 (c) TBHP與DTHP收率
結果:當H?O?/TBA摩爾比為0.8時,TBHP的產率和選擇性達到較優平衡。原文結論中最佳H?O?/TBA摩爾比為0.8。在70°C,H?SO?/TBA為1:1,H?O?/TBA為0.8:1(即TBA:H?O?=1:0.8)的條件下,停留0.98分鐘,TBHP產率為73.77%。
總結AFR最佳工藝條件:反應溫度70°C,H?SO?/TBA摩爾比1:1,H?O?/TBA摩爾比0.8:1,AFR反應器內停留時間0.98分鐘。
在確定的最佳原料配比 (H?SO?/TBA=1:1, H?O?/TBA=0.8:1) 和反應溫度 (70°C) 條件下,對四種反應器的性能進行了比較:
結果表明,AFR及AFR外接延長管路系統在TBA轉化率和TBHP產率方面均顯著優于傳統的管式反應器和間歇釜式反應器,尤其AFR能在極短的停留時間內實現高效轉化。
為深入理解反應過程并驗證方法的可靠性,研究團隊對TBA的轉化進行了動力學研究。
圖 6 (a) TBA濃度對數(ln CTBA)隨停留時間及反應時間的變化關系 (b) TBA濃度倒數(1/CTBA)
片中
隨停留時間及反應時間的變化關系:
反應級數:在60-70°C范圍內,通過對不同停留時間下的TBA濃度數據進行擬合分析,結果表明TBA的轉化過程符合二級反應動力學模型 (R2 = 0.9499)。
活化能 (Ea): 根據Arrhenius方程計算得到:
a)在康寧AFR反應器中,反應的活化能為 45.26 kJ/mol。
b)在AFR外接延長管路系統中,表觀活化能為 86.98 kJ/mol。
AFR反應器表現出更低的活化能,表明其為反應物提供了更有利的反應環境,降低了反應的能壘。
研究還評估了康寧AFR反應器的傳熱性能,結果顯示AFR具有優異的傳熱能力,其總傳熱系數得到了實驗驗證,并證明了其工藝具有良好的放大潛力。這對于控制強放熱反應(如過氧化反應)的溫度、避免熱點、提高反應安全性至關重要。