三级片视频播放,精品三级片在线观看,A级性爱视频,欧美+日韩+国产+无码+小说,亲子伦XX XX熟女,秋霞最新午夜伦伦A片黑狐,韩国理伦片漂亮的保拇,一边吃奶一边做边爱完整版,欧美放荡性护士videos

產(chǎn)品推薦:氣相|液相|光譜|質譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術中心>專業(yè)論文>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

孔隙缺陷對增材制造Ti-6Al-4V合金局部近閾值疲勞裂紋擴展行為的影響

來源:凱爾測控試驗系統(tǒng)(天津)有限公司   2025年08月11日 17:07  

引文格式:

GB/T 7714

Loiodice L, Stopka K S, Sangid M D. Pore defects’ influence on the local, near threshold fatigue crack growth behavior of additively manufactured Ti-6Al-4V[J]. Journal of the Mechanics and Physics of Solids, 2025: 106173.

MLA

Loiodice, Luca, Krzysztof S. Stopka, and Michael D. Sangid. "Pore defects’ influence on the local, near threshold fatigue crack growth behavior of additively manufactured Ti-6Al-4V." Journal of the Mechanics and Physics of Solids (2025): 106173.

APA

Loiodice, L., Stopka, K. S., & Sangid, M. D. (2025). Pore defects’ influence on the local, near threshold fatigue crack growth behavior of additively manufactured Ti-6Al-4V. Journal of the Mechanics and Physics of Solids, 106173.

背景簡介

增材制造(Additively Manufactured,AM)技術因其能夠制造具有功能性且接近凈成形的金屬零件而得到了快速發(fā)展,并受到越來越多的關注。Ti-6Al-4V鈦合金因強度-質量比高、耐高溫及耐腐蝕等優(yōu)異性能,被廣泛應用于航空、航天、船舶、汽車、能源、化工及生物醫(yī)學等領域。然而,AM Ti-6Al-4V的微觀結構、殘余應力、粗糙表面及孔隙缺陷,顯著影響其拉伸和疲勞性能。有研究表明,熱處理可以改善微觀結構和殘余應力,二次表面處理能降低表面粗糙度,而熱等靜壓(Hot Isostatic Pressing,HIP)可以用來降低材料中孔隙缺陷的體積分數(shù)和平均尺寸。然而,即使經(jīng)過HIP處理,也不可能消除孔隙,這對材料性能的影響至關重要,尤其是在損傷容限評估方面,對于航空航天應用也十分關鍵。

閾值應力強度因子范圍(ΔKth)是結構部件的一個重要設計參數(shù),它定義了材料在給定裂紋尺寸下不發(fā)生裂紋擴展時能夠承受的最高載荷。眾多實驗表明,AM Ti-6Al-4V的近閾值應力強度因子范圍相較于傳統(tǒng)制造的同類材料大幅降低。其原因不僅在于增材制造產(chǎn)生的細針狀微觀組織,還可能與的位錯亞結構、較高的位錯密度及殘余應力有關。現(xiàn)有研究提出的分析模型雖能基于孔隙尺寸預測該參數(shù),但在預測增材制造Ti-6Al-4V的ΔKth時會出現(xiàn)較大過預測偏差。這些模型僅考慮孔隙尺寸,忽略了孔隙形態(tài)、裂紋-孔隙相互作用以及微觀結構特征變化的影響。針對此問題,本研究提出一種新方法,通過靜態(tài)晶體塑性模擬計算含裂紋虛擬微觀結構的疲勞裂紋擴展速率及閾值應力強度因子范圍,采用微觀結構敏感的累積塑性應變能密度作為疲勞損傷指標,并開發(fā)新方法準確外推其在模擬載荷周期之外的增長,進而量化孔隙缺陷對AM Ti-6Al-4V的ΔKth的影響(圖1)。

圖1 基于靜態(tài)晶體塑性模擬的裂紋擴展速率預測框架

成果介紹

(1)為了分析微觀結構特征變化的影響,生成了三種不同的等效虛擬微觀結構(Statistically Equivalent Virtual Microstructures,SEVMs)來進行晶體塑性模擬。同時,為了研究孔隙形態(tài)與大小對裂紋擴展的驅動力的影響,選擇了五種不同的孔隙進行建模,這五種孔隙具有不同的尺寸、球形度、平整度以及距裂紋不同距離的位置(圖2)。晶體塑性模擬采用了彈性-粘塑性(EVP-FFT)晶體塑性模型公式,并選用累積塑性應變能密度ωP作為微觀結構敏感疲勞損傷指標(如式1-2所示)。

圖2 本研究中分析的所有案例概覽:3個SEVM、5個孔隙和4個裂紋-孔隙距離的組合,共計60個案例

其中給定材料點x的塑性應變能密度,計算為第y個疲勞循環(huán)中所有滑移系對某個增量的貢獻之和,Q是滑移系的數(shù)量,τλ(x,t)是對于給定材料點x分解到滑移系λ上的剪應力。

由于計算時間限制,晶體塑性模擬通常只在有限數(shù)量的加載循環(huán)內進行。因此,目前的研究常采用外推法來預測模擬循環(huán)次數(shù)之外的材料響應。本研究提出一種衰減外推法(非線性),旨在通過基于前一個循環(huán)y的ωP計算循環(huán)y+1的ωP來近似其實際增長,如式3-5所示。基于加載循環(huán)的模擬數(shù)據(jù),將預測結果與模擬結果進行比較,發(fā)現(xiàn)衰減外推法始終能更好地得到ωP值,并且與所有三種模擬中的線性外推法相比,其預測誤差更低(圖3)。

其中ΔωP為載荷循環(huán)y與y-1之間ωP的變化量,ΔωPerc表示載荷循環(huán)y與y-1之間ΔωP的百分比變化量,d為衰減因子,定義為最后一個模擬載荷循環(huán)l與倒數(shù)第二個模擬循環(huán)l-1之間ΔωP的百分比變化量之比,衰減因子的取值范圍為0.92至0.99之間。

圖3 三個測試模擬中,基于模擬加載循環(huán),對線性外推方法和衰減外推法的比較

裂紋擴展尺寸(da)是疲勞熱點處體素數(shù)轉為長度尺度后的值(1體素=1 μm),臨界載荷循環(huán)dN是達到臨界累積塑性應變能密度所需的循環(huán)次數(shù)。研究用衰減外推法,基于模擬載荷循環(huán)的數(shù)據(jù),預測模擬后的累積塑性應變能密度直至臨界值。此方法假設小裂紋從累積塑性應變能密度最高的局部開始擴展,之后擴展至整個裂紋。應力強度因子范圍是施加應力范圍和裂紋半徑a的函數(shù):

其中Y是裂紋的幾何因子(取為1.12),Δσapp是施加的應力范圍。

(2)如圖4所示,為SEVM 1(孔隙缺陷B)的晶體塑性模擬結果,預測了微觀力學場σzz和ωP。結果表明,裂紋和孔隙構成高應力和塑性集中區(qū)。應力σzz在介于150至350MPa之間,符合晶粒特征的各向異性響應,但靠近裂紋和孔隙的區(qū)域發(fā)生應力集中達到750MPa。類似地,ωP場表明,除了裂紋和孔隙的附近區(qū)域外,幾乎整個微觀結構中都不存在塑性。如圖5所示,SEVM 1中,將五個不同的孔隙插入距離裂紋較近的位置(2-20 μm)并比較其ΔKth,與基線值(1.69 MPa·m1/2)相比,這些孔隙使得ΔKth呈現(xiàn)出一致的減小趨勢,但不同孔隙之間的差異很大。這突顯了孔隙缺陷的特征對裂紋擴展前ωP分布的影響程度較大,從而影響預測的ΔKth值。盡管如此,所有孔隙在距離裂紋較近的位置處都會促進裂紋擴展,因為它們會導致ΔKth值降低。

圖4 SEVM 1中平面晶體塑性模擬結果σzz和ωP的可視化結果,其中孔隙B位于四種不同的裂紋-孔隙距離

圖5 SEVM 1的裂紋擴展速率曲線,其中孔隙 (a) A、(b) B、(c) C、(d) D 和 (e) E

(3)值得注意的是,盡管孔隙缺陷A是孔隙中最大且形態(tài)最不規(guī)則的孔隙,但它是距裂紋較近(2-20 μm)時危害最小的孔隙之一。如圖6所示,孔隙A的ΔKth減少了2%到11.5%,遠低于孔隙B造成的35%的減少。雖然這似乎有悖常理,但它可以通過孔隙A的形態(tài)來解釋。如圖7所示,孔隙A的形態(tài)在裂紋頂部有一個突起,對裂紋起到屏蔽作用,從而減小裂紋的應力集中與局部塑性,降低了ωP及裂紋擴展速率。這種現(xiàn)象稱為裂紋屏蔽,為本研究提出的假設提供了有力證據(jù):與孔隙的整體尺寸和球形度相比,裂紋附近局部孔隙特征對裂紋擴展的影響更大。

圖6 SEVM 1、2和3中,各孔隙在距裂紋 (a) 長距離、(b) 中距離、(c) 短距離和 (d) 重疊距離處的ΔKth值

(4)SEVM1、2和3遵循相似的趨勢,對于每個孔隙和裂紋-孔隙距離具有相似的ΔKth值(圖7)。對于相同的孔隙和裂紋-孔隙距離,超過75%的研究案例觀察到不同SEVM之間的ΔKth變化低于5%。然而,在較短的裂紋-孔隙距離和重疊的情況下,ΔKth變化波動最大,在最壞情況下高達16%。因此,與局部微觀結構相比,ΔKth的變化似乎對孔隙類型及其與裂紋的接近程度更為敏感,而局部微觀結構導致ΔKth的變化并不顯著。這可能是因為裂紋(半徑為35-70 μm)和孔隙(等效直徑為83-171.5 μm)的尺寸明顯大于AM Ti-6Al-4V的細晶粒尺寸(α相平均尺寸為7.4 μm),導致與孔隙缺陷附近的局部應力集中相比,微觀結構變化對材料應力響應的影響較小。當裂紋和孔隙尺寸與材料系統(tǒng)的晶粒尺寸相當時,可能會產(chǎn)生不同的結果,在這種情況下,微觀結構可能發(fā)揮更重要的作用。

圖7 在每個SEVM中,孔隙 (a) A、(b) B、(c) C、(d) D 和 (e) E 的ΔKth值與裂紋-孔隙距離的關系


免責聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
  • 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
  • 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網(wǎng)聯(lián)系,否則視為放棄相關權利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
主站蜘蛛池模板: 临高县| 牡丹江市| 兴安盟| 四子王旗| 冀州市| 齐河县| 桐乡市| 尤溪县| 龙江县| 伊宁县| 乌兰浩特市| 平陆县| 高唐县| 仪陇县| 靖远县| 南木林县| 株洲县| 泽库县| 深泽县| 宣汉县| 方城县| 手游| 吉安县| 胶州市| 墨竹工卡县| 凉城县| 新宁县| 玉溪市| 收藏| 乌鲁木齐县| 环江| 靖江市| 惠水县| 阿合奇县| 定边县| 合肥市| 垫江县| 台中县| 天气| 牙克石市| 中超|